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Waves past porous structures in a two-layer fluid
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Abstract. Havelock’s type of expansion theorems, for an integrable function having a single discontinuity point in
the domain where it is defined, are utilized to derive analytical solutions for the radiation or scattering of oblique
water waves by a fully extended porous barrier in both the cases of finite and infinite depths of water in two-layer
fluid with constant densities. Also, complete analytical solutions are obtained for the boundary-value problems
dealing with the generation or scattering of axi-symmetric water waves by a system of permeable and imperme-
able co-axial cylinders. Various results concerning the generation and reflection of the axisymmetric surface or
interfacial waves are derived in terms of Bessel functions. The resonance conditions within the trapped region
are obtained in various cases. Further, expansions for multipole-line-source oblique-wave potentials are derived for
both the cases of finite and infinite depth depending on the existence of the source point in a two-layered fluid.
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1. Introduction

The classical wavemaker theory developed by Havelock[1] has received significant attention in
the literature under the assumption of the linearized theory of water waves in the case of a
single homogeneous fluid of constant density for analyzing wave interaction with structures in
two and three dimensions, including a large class of axi-symmetric problems. However, negli-
gible progress has been made towards analyzing the wave motion of a two-layer or multi-layer
fluid having different but constant densities with a free surface. This is of particular interest
in understanding wave transformation in the presence of submerged/floating structures in con-
tinental shelves and estuaries. Such sharp density gradients can be generated in the ocean due
to gravitational settling of sediments carried by fluids or by solar heating of the upper layer
or in an estuary or a fjord into which fresh river water flows over oceanic water which is
more saline and consequently heavier. This is being idealized by considering a two-layer sys-
tem with lighter fluid of density ρ1 lying over a heavier fluid of density ρ2. Unlike the case of
a homogeneous fluid, the two-layer fluid system, having a free surface and an interface, gives
rise to fast modes (surface waves) as well as slow modes (internal waves). Hence, in the wave-
scattering problem, the reflection and transmission characteristics of the structure will depend
on both fast modes and slow modes. As a result, corresponding to each type of mode, the
reflection and transmission coefficients, wave elevations, wave load on the submerged struc-
tures are to be analyzed, which needs a different type of treatment compared to that of wave
motion in a single-layer fluid. In addition, the significant role of internal waves in a two-layer
fluid is well understood from the various observations made in the literature [2].

It is observed that in the case of a two-layer fluid, ships experience an abnormal resis-
tance force at the interface in the Norwegian fjords (see [3]) which was a mystery (and was



356 S.R. Manam and T. Sahoo

attributed to dead water!) until Bjerknes, who explained it as due to the internal waves at
the interface generated by the motion of the ship (see [4, pp. 234–242]). Yeung and Nguyen
[5] employed an integral-equation technique to analyze the three-dimensional radiation and
diffraction problems for a rectangular barge in finite depth. Cadby and Linton [6] used multi-
pole expansions to solve problems involving submerged spheres in each of the two layers with
the second layer being of infinite depth. Other notable works on wave–structure interaction in
a two-layer fluid include [7–10].

One of the major difficulties in applying Havelock’s wavemaker theory to a two layer sys-
tem having a free surface is the existence of two surfaces where two types of waves propa-
gate. In the fluid domain, apart from the conditions on the structure, flow discontinuity at
the interface of the two layers makes the problem more difficult for applying Fourier analy-
sis directly. As a result, the eigenfunctions involved in two-layer wave motion having a free
surface are not orthogonal in the usual sense. Recently, Mandal and Chakrabarti [11] gave
an integral-expansion formula, along with the corresponding inversion formula, for a function
having an integrable singularity in (0,∞), in terms of orthogonal functions.

The scattering and generation of waves by permeable barriers are well studied in the recent
literature [12–14] under the assumptions of the linearised theory of water waves in a single-
layer fluid of finite depth. However, negligible progress has been made in the literature on the
study of wave past porous structures in a two-layer fluid having a free surface and interface.
Sherief et al. [15] analyzed the two-dimensional problem of forced gravity waves generated by
a porous wavemaker in a two-layer fluid in water of finite and infinite depths in an elementary
manner.

To deal with these classical problems in two-layer fluid systems with a free surface, in
the present study, the velocity potentials for both the cases of finite and infinite depths are
expanded in terms of a set of complete orthogonal eigenfunctions with respect to a suit-
able inner product. Utilizing these orthogonal functions, we obtain analytical solutions for
the radiation and scattering of oblique water waves by a porous structure in in a two-layer
fluid domain having a free surface. This form of solution is more transparent and straight-
forward compared to the one presented by Sherief et al. [15] for the particular case of nor-
mal incidence. Also, a class of problems dealing with the wave scattering and radiation of
axi-symmetric water waves by permeable or(and) impermeable cylindrical structure(s) is(are)
analyzed for a two-layer fluid medium. The results obtained for the single-fluid medium by
Sahoo[16] concerning the generation and reflection of the surface waves are extended for a
two-layer fluid medium and analytical expressions are obtained in terms of Bessel functions.
In addition, the trapping of waves by the cylinders is studied and the condition for resonance
of waves in the trapped region is derived. Numerical results concerning wave scattering and
wave generation by permeable structures are analyzed for finite water depth for understanding
of the derived theoretical results.

Further, we derive the oblique-line-source wave potentials in both the cases of water of
finite and infinite depths depending on the existence of the source in the fluid domain and
these are useful for the semi-analytical study of the scattering of water waves by submerged
cylindrical structures of arbitrary shape in the fluid.

2. Mathematical formulation and solution method

We consider infinitesimal irrotational time-harmonic wave motion of two superimposed invis-
cid and incompressible fluids of constant density under the influence of gravity. We assume
that the upper and lower fluid have constant densities ρ1 and ρ2(> ρ1), respectively (see
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Figure 1. Defination sketch.

Figure 1). The mathematical formulation of the problems and their solution method for both
the situations of finite and infinite depths are presented in the following subsections.

2.1. Oblique wave interaction with a vertical porous structure

Let (x, y, z) be the Cartesian co-ordinate of any point in the region with o(0,0,0) being in
the undisturbed free surface such that oy points vertically downwards. The fluid occupies the
region −∞<x, z<∞, 0<y <∞ for infinite depth and −∞<x, z<∞, 0<y <H for finite
depth, except the porous structure which is located at x=0 and extends from the free surface
to the bottom. In the case of finite depth, the upper layer is of depth h and the lower fluid
is of depth H −h, whilst in case of infinite depth the lower fluid extends from h to ∞. For
oblique-wave propagation with angular frequency ω, the velocity potential is assumed to be
of the form �(x, y, z, t)=Re

{
φ(x, y)ei(l0z−ωt)

}
, where l0 =α sin ν, 0≤ν≤π/2 being the angle

of the incident wave with x-axis and α=K(m1) for infinite depth (finite depth) so that l0 ≤α.
The function φ(x, y) satisfies the partial differential equation

�2φ

�x2
+ �2φ

�y2
− l20φ=0, (2.1)

along with the linearized free-surface boundary condition [17]

�φ
�y

+Kφ=0 on y=0, (2.2)

where K= ω2

g
>0, with g being the acceleration due to gravity, represents the normal incident

wave number and the interface conditions [17]

�φ(x,h−)
�y

= �φ(x,h+)
�y

; ρ1

[�φ(x,h−)
�y

+Kφ(x,h−)
]
=ρ2

[�φ(x,h+)
�y

+Kφ(x,h+)
]
.

(2.3)

When the porous wavemaker at x = 0 is assumed to oscillate with horizontal velocity of
the form Re

{
u(y)ei(l0z−wt)

}
, the condition on the structure is given by

�φ
�x

= iG[φ(0−, y)−φ(0+, y)]+u(y), on x=0 for all y ∈ (0,∞) or (0,H), (2.4)

where G=Gr + iGi is the porous-effect parameter of dimension of length and defined by Yu
and Chwang [18] as

G= γ (f + is)
d(f 2 + s2)
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with γ being the porosity constant, f the resistance force coefficient, s the inertial-force coeffi-
cient and d the thickness of the porous medium. The real part Gr represents the resistance
effect of the porous material against the flow, while the imaginary part Gi represents the iner-
tia effect of the fluid inside the porous material. We assume that the parameter G is the same
in both layers of the fluid. Note that the limiting case G→ 0 represents the case of a rigid
impermeable barrier. The detailed derivation of the porous-boundary condition is based on
that of Sollitt and Cross [19] and is well explained in [18]. It is widely used in the recent lit-
erature and was recently reviewed by Chwang and Chan [20]. This formula is based on the
principle that the horizontal velocity is proportional to the pressure gradient; a simple version
of this porous-boundary condition was derived earlier by Chwang [12].

Finally, the radiation conditions for the outgoing waves are given by

φ(x, y)∼
{

A1eiµx−Ky +R1e−iµx−Ky +A2eiβxl(y)+R2e−iβxl(y) as x→−∞
T1eiµx−Ky +T2eiβxl(y) as x→∞,

(2.5)

for infinite depth and

φ(x, y)∼




2∑
j=1

Aj eiµj xf0(mj , y)+
2∑
j=1

Rj e−iµj xf0(mj , y) as x→−∞
2∑
j=1

Tj eiµj xf0(mj , y), as x→∞
(2.6)

for finite depth, where the constants Rj , Tj , j =1,2 are unknown constants to be determined

while the constants Aj , j = 1,2 are assumed to be known and µ=
√
K2 − l20 , β =

√
v2 − l20 ,

µj =
√
m2
j − l20 , j =1,2.

For infinite depth, the bottom-boundary condition is given by

φ,∇φ→0 as y→∞ (2.7)

and is replaced by

�φ
�y

=0 on y=H (2.8)

in the case of finite depth.
The above boundary-value problem for φ represents a class of problems concerning the

generation or scattering of oblique water waves by a vertical porous structure. The complete
analytical solution of this general problem is obtained and, then, particular choices of the
constants Ai,Rj , j=1,2 and the function u(y) illustrate specific problems of physical interest.

2.1.1. Case of infinite depth
The general form of the velocity potential φ(x, y),0<y <∞, satisfying Equation (2.1) and
the boundary conditions (2.2–2.5) and (2.7), is given by

φ(x, y)=




A1eiµx−Ky +R1e−iµx−Ky +A2eiβxl(y)+R2e−iβxl(y)

+
∫ ∞

0
A(ξ)L(ξ, y)ex

√
ξ2+l20 dξ, x <0,

T1eiµx−Ky +T2eiβxl(y)+
∫ ∞

0
B(ξ)L(ξ, y)e−x

√
ξ2+l20 dξ, x >0,
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where A(ξ),B(ξ) are unknown functions to be determined and the bounded functions

e−Ky,0<y<∞, L(ξ, y)=
{

L1(ξ, y), for y ∈ (0, h)
L2(ξ, y), for y ∈ (h,∞),

with

L1(ξ, y)=K(ξ cos ξy−K sin ξy),

L2(ξ, y)=L1(ξ, y)+ (ρ2 −ρ1)

ρ2
(ξ2 +K2) sin ξh cos ξ(y−h),

and

l(y)=
{

g(y), for y ∈ (0, h)
ev(h−y), for y ∈ (h,∞),

with

g(y)= K(ρ2 +ρ1)−v(ρ2 −ρ1)

2Kρ1
e−v(y−h)+ (K−v)(ρ2 −ρ1)

2Kρ1
ev(y−h).

Here v is the unique positive real root of the transcendental equation

(K+v)(ρ2 −ρ1)e
−vh+ [K(ρ2 +ρ1)−v(ρ2 −ρ1)]e

vh=0. (2.9)

The functions e−Ky,L(ξ, y) and l(y) are orthogonal with respect to the inner product
defined by

<φ1,ψ1>1= lim
ε→0

[
ρ1

∫ h

0
e−εyφ1(y)ψ1(y)dy+ρ2

∫ ∞

h

e−εyφ1(y)ψ1(y)dy
]
, (2.10)

where φ1 and ψ1 belong to the real Hilbert space of integrable functions. These functions are

the eigenfunctions of the self-adjoint linear differential operator
d2

dy2
corresponding to the ei-

genvalues K2, v2 and −ξ2(ξ > 0), satisfying the boundary conditions (2.2), (2.3) and (2.7).
Hence they form a complete set.

In the above expansion for the velocity potential, K refers to the wave number correspond-
ing to wave propagating on the free surface (surface mode and is referred as SM), whilst v
refers to the wave number corresponding to the propagating wave generated due to the pres-
ence of the interface (internal mode and is referred as IM). In addition, it is worth mention-
ing that, by allowing ρ1 →ρ2 and h→0 simultaneously and noting that Equation (2.9) does
not have any positive real root, we obtain Havelock’s type of expansion for the velocity poten-
tial in a single layer fluid.

The above orthogonal relation is utilized to determine the unknowns in the expansion for
the function φ(x, y) and is described as follows.

Using the continuity of horizontal velocity �φ/�x across x= 0, and the orthogonal prop-
erty of the functions involved, we derive that Aj −Rj =Tj , j = 1,2; A(ξ)=−B(ξ). Further,
utilizing the orthogonal relation on the porous-wavemaker condition (2.4), we obtain that

iµ(A1 −R1)−2iR1G=
2Ke2Kh

〈
u(y), e−Ky

〉
1

ρ2 +ρ1
(
e2Kh−1

) ,

iβ(A2 −R2)−2iR2G= 2v

ρ2 +2ρ1v

∫ h

0
g2(y)dy

[
ρ1

∫ h

0
u(y)g(y)dy+ρ2

∫ ∞

h

u(y)e−v(y−h)dy
]
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and

A(ξ)= 2
π

ρ2

(ξ2 +K2)
[√
ξ2 + l20 −2iG

]
D0(ξ)

[
ρ1

∫ h

0
u(y)L1(ξ, y)dy+ρ2

∫ ∞

h

u(y)L2(ξ, y)dy
]
,

(2.11)

where

D0(ξ)=
[
(ρ2 −ρ1)ξ sin ξh+Kρ2 cos ξh

]2 +ρ2
1K

2 sin2 ξh.

Thus, the unknowns in the expansion for the velocity potential in the two-layer fluid are
obtained in a straightforward manner. Next, as an application of this expansion, we analyse
briefly the porous-wavemaker problem and the wave scattering by a porous barrier in a two-
layer fluid of infinite depth.
Wavemaker problem: In this case A1 = 0,A2 = 0 and u(y) �= 0 in the general expansion for
the velocity potential, as there are no incident waves. The unknown complex constants R1,R2

represent the far-field wave amplitudes of the surface and interfacial waves generated by the
porous wavemaker and are obtained as

R1 =
2iKe2Kh

〈
u(y), e−Ky

〉
1

(µ+2G)[ρ2 +ρ1(e2Kh−1)]
,

R2 = 2iv

(β+2G)
[
ρ2 +2ρ1v

∫ h

0
g2(y)dy

]
[
ρ1

∫ h

0
u(y)g(y)dy+ρ2

∫ ∞

h

u(y)e−v(y−h)dy
]
,

where A(ξ) remains as given by the relation (2.11).
In particular, when u(y)= e−Ky , utilizing the symmetric potential φ(x, y), we obtain the

wave amplitudes R1 and R2, the force acting on the wavemaker F and the surface and inter-
facial elevations ζ1(x, t) and ζ2(x, t) as

R1 = i
µ+2G

, R2 = i
β+2G

,

F(z)= iωeil0z
[
ρ1

∫ h

0
(φ(0+, y)−φ(0−, y))dy+ρ2

∫ ∞

h

(φ(0+, y)−φ(0−, y))dy
]

= 2ω[ρ1 + (ρ2 −ρ1)e−Kh]
K(µ+2G)

eil0z,

ζ1(±x, z, t)=−Re

{
iω
g
φ(x,0)ei(l0z−ωt)

}
=∓ω

g
Re

{±ei(µx+l0z−ωt)

µ+2G

}
, x >0

and

ζ2(±x, z, t)=−Re

{
iω

g(ρ2 −ρ1)

[
ρ2φ(x,h+)−ρ1φ(x,h−)

]
ei(l0z−ωt)

}

=∓ωe−Kh

g
Re

{±ei(µx+l0z−ωt)

µ+2G

}
, x >0.

Oblique wave scattering: In the case of the scattering problem, the permeable barrier is
kept fixed at x = 0 and hence u(y)= 0. In addition, in this case A1 = 1 (or) 0,A2 = 0 (or) 1
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because of the presence of one of the incident waves, as appropriate, and the unknown con-
stants R1, T1 (or) R2, T2, representing the reflection and transmission coefficients associated
with the free surface or interfacial wave, are given by

R1 = µ

µ+2G
(or) R2 = β

β+2G

and

T1 = 2G
µ+2G

(or) T2 = 2G
β+2G

.

From the above relations, it is observed that, in either case, energy loss occurs at the porous
barrier,i.e., |Rj |2 + |Tj |2 < 1, j = 1,2. Also, when G→ 0, Rj = 1, Tj = 0, j = 1,2 showing no
energy loss in the case of a rigid barrier.

2.1.2. Case of finite depth
In this case, the general form of the velocity potential φ(x, y), 0<y<H satisfying equation
(2.1) and the boundary conditions (2.2–2.4), (2.6) and (2.8) is given by

φ(x,y)=




2∑
j=1

Aj eiµj xf0(mj ,y)+
2∑
j=1

Rj e−iµj xf0(mj ,y)+
∞∑
n=1

Bnfn(pn,y)e
x

√
p2
n+l20 , x<0,

2∑
j=1

Tj eiµj xf0(mj ,y)+
∞∑
n=1

Cnfn(pn,y)e
−x

√
p2
n+l20 , x>0,

where Bn,Cn, for n=1,2,3 . . . are unknown constants to be determined and the functions

f0(mj ,y)=
{

sinhmj(h−H)[mj coshmjy−K sinhmjy] for y∈(0,h)
[mj sinhmjh−K coshmjh]coshmj(y−H) for y∈(h,H), j=1,2, (2.12)

and

fn(pn,y)=
{

sinpn(h−H)[pncospny−K sinpny] for y∈(0,h)
[pnsinpnh+K cospnh]cospn(y−H) for y∈(h,H), n=1,2,3..., (2.13)

with 0<m1<m2 (say). Here ipn,n=1,2,3, . . . , pn>0 are the roots of the dispersion relation

(ρ2 −ρ1)x
2 −ρ2K

[
coth x(H −h)+ coth xh

]
x+K2

[
ρ1 +ρ2 coth x(H −h) coth xh

]
=0.

The bounded functions fn’s are orthogonal with respect to the inner product

<fn,fm>2=ρ1

∫ h

0
fn(y)fm(y)dy+ρ2

∫ H

h

fn(y)fm(y)dy. (2.14)

These functions are the eigenfunctions of the self-adjoint linear differential operator
d2

dy2
cor-

responding to the eigenvalues m2
j , j=1,2 and −p2

n, n=1,2,3, . . . and satisfying the boundary
conditions (2.2), (2.3) and (2.8). Hence they form a complete set.

In this case also, there are two types of progressive wave, which are generated because of
the presence of the free surface and the interface for the wave motion in a two-layer fluid.
The eigenvalues m1 and m2 correspond to the wave numbers of the incident waves in SM
and IM respectively, whilst the pn correspond to the evanescent wave modes. It may be noted
that by allowing ρ1 →ρ2 and h→0 simultaneously, the above eigenfunctions reduce to those
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used in water-wave problems for a single-layer fluid having a free surface. We will now use of
the above orthogonal relation to derive unknown constants in the expansion for the velocity
potential.

Utilizing the continuity of velocity across the porous wavemaker, i.e., the continuity of
�φ/�x across x = 0 and the orthogonal property of the functions f0(mj , y), j = 1,2 and
fn(pn, y), n=1,2,3 . . . , we derive that Aj −Rj =Tj , j =1,2; Bn=−Cn, n=1,2,3 . . . .

Using the condition (2.4) on the porous wavemaker, and the orthogonality relation as
mentioned above, the unknown constants Rj , j =1,2,Bn, n=1,2,3 . . . are obtained as

Rj= µj

µj+2G
Aj+i

〈
u(y),f0(mj ,y)

〉
2

M0(mj )(µj+2G)
, j=1,2, Bn=

〈
u(y),fn(pn,y)

〉
2

Mn(pn)
[√
p2
n+l20 −2iG

] , n=1,2,3...,

(2.15)

where M0(mj )=
〈
f0(mi, y), f0(mi, y)

〉
2
, j=1,2 and Mn(pn)=

〈
fn(pn, y), fn(pn, y)

〉
2
, n=1,2,3 . . . .

Next, we deduce from the general expansion formula the results for the generation of water
waves by a porous wavemaker and for the scattering of waves by a porous barrier in a two-
layer fluid of finite depth.

Wavemaker Problem: Similar to the case of water of infinite depth, in this case also A1 =0,
A2 =0 and u(y) �=0. The unknown constants R1,R2 represent the far-field wave amplitudes of
the surface and interfacial waves generated by the porous wavemaker located at x=0 and are
obtained as

Rj =
i

〈
u(y), f0(mj , y)

〉
2

(µj +2G)M0(mj )
, j =1,2.

The constants B ′
ns remain the same as in the relation (2.15).

In particular, when u(y)= 1 for 0<y <H , the wave amplitudes R1 and R2, the force F
acting on the wavemaker and the surface and interfacial elevations ζ1(x, t) and ζ2(x, t) are
given by

Rj = iρ1 sinhmj(h−H)[mj sinhmjh+K(1− coshmjh)]
mj(µj +2G)M0(mj )

− iρ2[mj sinhmjh−K coshmjh] sinhmj(h−H)
mj (µj +2G)M0(mj )

, j =1,2, (2.16)

F(z)=−2ωeil0z
2∑
j=1

R2
j (mj +2G)M0(mj )−2iωeil0z

∞∑
n=1

B2
n

(√
p2
n+ l20 −2iG

)
Mn(pn),

ζ1(±x, z, t)=±ω
g

Re

{ 2∑
j=1

iRjmj sinhmj(h−H) ei(±µj x+l0z−ωt)

+
∞∑
n=1

iBnpn sinpn(h−H) e
(
∓

√
p2
n+l20x+il0z−iωt

)}
, x >0
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Figure 2. (a) Free surface and (b) Interface elevation vs. x/λ1 for different h/H values with s=0.9, G=1+0.5i and
ν=π/3.0.

and

ζ2(±x, z, t)=± ω

g(ρ2 −ρ1)
Re

{ 2∑
j=1

iRj ei(±µj x+l0z−ωt)Q0(mj )

+
∞∑
n=1

iBne
(
∓

√
p2
n+l20x+il0z−iωt

)
Qn(pn)

}
, x >0.

Here

Q0(mj )=ρ2 coshmj(h−H)[mj sinhmjh−K coshmjh]

−ρ1 sinhmj(h−H)[mj coshmjh−K sinhmjh], j =1,2,

Qn(pn)=ρ2 cospn(h−H)[pn sinpnh+K cospnh]

−ρ1 sinpn(h−H)[pn cospnh−K sinpnh], n=1,2,3, . . . ,

Bn= ρ1 sinpn(h−H)[pn sinpnh−K(1− cospnh)]

pn
(√
p2
n+ l20 −2iG

)
Mn(pn)

−ρ2[pn sinpnh+K cospnh] sinpn(h−H)
pn

(√
p2
n+ l20 −2iG

)
Mn(pn)

, n=1,2,3, . . . , (2.17)

and Rj , j =1,2 are given by the relation (2.16).
Using the above expressions, we now compute and analyze the surface and interfacial ele-

vations and force on the structure at z= 0 for the case of waves making an angle π/6 with
x-axis.

In Figure 2a, b, the free-surface and interface elevations are plotted, respectively, for differ-
ent h/H ratios. It is observed that, with an increase in h/H ratio, the wave amplitude at the
interface is increasing in nature, whilst the wave amplitude at the free surface is decreasing.
At the interface the surface elevation consists of two wave patterns, namely the primary and
secondary wave pattern. The secondary wave pattern is observed to be reducing for higher
values of h/H .

Variation of free surface, interface elevations at different s values are plotted in Figure
3a, b, respectively. It is observed that when the density difference is large, the amplitude of
both free surface and interface are higher. At the interface, for higher values of the s too,
the surface elevation consists of the primary and secondary wave patterns and the former is
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Figure 3. (a) Free surface and (b) Interface elevation versus x/λ1 for different s values with h/H =0.5, G=1+0.5i
and ν=π/3.0.

similar to that of the free-surface wave pattern with the latter being sensitive to higher val-
ues of s. Also, the amplitude of the interface elevation is larger compared to that of the free
surface and could cause more resistance to the structure.

Based on the expression for the force F acting on the wavemaker, in Figure 4, the non-
dimensional force amplitude Kf (defined as Kf = |K2F/2ωρ1u|) against m1H for different
s values is plotted. It is observed that the amplitude of the force acting on the structure
increases as m1H and s increases. This may be due to the existence of the the free surface
and interface which produces two types of wave pattern existing at the interface as discussed
in Figure 3a and b.
Wave scattering: Here A1 = 1 (or) 0,A2 = 0 (or) 1 and u(y)= 0. The constants R1, T1 (or)
R2, T2 represent the reflection and transmission coefficients of the surface or interfacial inci-
dental wave and are given by

R1 = µ1

µ1 +2G
or R2 = µ2

µ2 +2G

and

T1 = 2G
µ1 +2G

or T2 = 2G
µ2 +2G

.

Clearly, there is an energy loss due to the porous barrier, i.e., |Rj |2 +|Tj |2<1, j =1,2. When
G=0, the incident wave is fully reflected with no loss of energy by the barrier.

The reflection and transmission coefficients in surface and interfacial modes depend on the
respective wave numbers, the porous-effect parameter and the angle of the incidence wave. The
variation of the reflection coefficients (both in surface and internal modes) with respect to
m1H for different s-values are presented in Figure 5. It is observed that with an increase in
m1H the reflection coefficients, both in surface and internal modes, decrease from its peak
sharply and then maintains a constant value. The reflection coefficient in the surface mode is
high for smaller values of s and an opposite trend is observed for the internal mode. How-
ever, over the entire range of m1H the reflection coefficient in the internal mode is found to
be higher than that in the surface mode.

In Figure 6, the variation of the reflection coefficients with respect to m1H for different
h/H values are shown. It is observed that the effect of interface location on the reflection
coefficient in the surface mode is negligible. However a negligible variation is noted for the
internal modes in the shallow-water region.
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Figure 4. Non-dimensional force vs. m1H for different
s values with h/H =0.5, G=1+0.5i and ν=π/3.0.
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Figure 5. Reflection coefficients vs. m1H for different s
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Figure 6. Reflection coefficients vs. m1H for different
h/H ratios with G=1+0.5i, s=0.9 and ν=π/3.0.
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G values with h/H =0.5, s=0.9 and ν=π/3.0.

Finally, the variation of reflection coefficients against m1H for different G values is plotted
in Figure 7. It is observed that the reflection coefficients in both surface and internal modes
are decreasing with an increase in the porous-effect parameter. In general, for a porous struc-
ture, reflection of waves in IM is higher than that of waves in SM.

2.2. Generation of axi-symmetric waves

In this section, we undertake the study of axi-symmetric three-dimensional water waves in a
two-layer fluid having different but constant densities for both the cases of infinite and finite
depth. Let (r, θ, y) be any point in the cylindrical coordinate system with o(0, 0, 0) being the
origin in the undisturbed free surface such that oy points vertically downwards. We first dem-
onstrate the solution method to the general boundary-value problem comprising the genera-
tion and scattering of axi-symmetric water waves in a two-layer fluid, either by two co-axial
cylinders of impermeable, permeable types placed at r = a, b, respectively, with 0<a <b or
by a single permeable cylinder placed at r= b. Subsequently, we discuss the specific cases of
physical interest for both infinite and finite depths. However, numerical results are presented
for the case of finite depth in order to understand the phenomenon of trapping and wave res-
onance in SM and IM.

Under the assumption of the linearised theory of water waves, the axi-symmetric water
wave motion is described by the velocity potential �(r, y, t) = Re{φ(r, y)e−iωt }. Then the
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function φ(r, y) satisfies the partial differential equation

�2φ

�r2
+ 1
r

�φ
�r

+ �2φ

�y2
=0, in the fluid region, (2.18)

along with the free-surface condition (2.2), the interface conditions (2.3) and the bottom con-
dition (2.7) or (2.8) depending upon the case of water of infinite or finite depth.

Further, the conditions on the inner impermeable cylinder and the outer permeable cylin-
der are given by

�φ(a+, y)
�r

=u1(y), a >0 (2.19)

and

�φ(b±, y)
�r

= iG(φ(b−, y)−φ(b+, y))+u2(y), b>a, (2.20)

where u1(y), u2(y) represent the velocities of the oscillating inner and outer cylinders, respec-
tively, and G is the porous-effect parameter as mentioned in Subsection 2.1, which is assumed
to be the same in both layers of the fluid.

The radiation condition, in the case of water of infinite depth, is given by

φ(r, y)∼A1H
(2)
0 (Kr)e−Ky +R1H

(1)
0 (Kr)e−Ky +A2H

(2)
0 (vr)l(y)+R2H

(1)
0 (vr)l(y), (2.21)

as (b<)r→∞, where Rj , j =1,2 are the unknown constants to be determined. Here H(m)
n (x)

for m= 1,2 are the Hankel functions of order n and the constants Aj , j = 1,2 are assumed
to be known.

φ(r, y)∼
2∑
j=1

[
AjH

(2)
0 (mj r)+RjH(1)

0 (mj r)
]
f0(mj , y) as (b<)r→∞. (2.22)

The detailed solution procedures are discussed separately for both the cases of water of infi-
nite and finite depths and physical problems of practical interest are analyzed as special cases
of the general problem.

2.2.1. Case of infinite depth with co-axial cylinders
The general form of the velocity potential φ which satisfies the Laplace equation as given by
the boundary-value problem described by the relations (2.2), (2.3), (2.7), (2.18–2.21) is given
by

φ(r, y)=




[
α1J0(Kr)+β1H

(1)
0 (Kr)

]
e−Ky +

[
α2J0(vr)+β2H

(1)
0 (vr)

]
l(y)

+
∫ ∞

0

[
A(ξ)I0(ξr)+B(ξ)K0(ξr)

]
L(ξ, y)dξ, 0<a<r <b, 0<y<∞,

A1H
(2)
0 (Kr)e−Ky +R1H

(1)
0 (Kr)e−Ky +A2H

(2)
0 (vr)l(y)+R2H

(1)
0 (vr)l(y)

+
∫ ∞

0
C(ξ)K0(ξr)L(ξ, y)dξ, b<r <∞, 0<y<∞,

(2.23)

where α1, β1, α2, β2,R1,R2,A(ξ),B(ξ) and C(ξ) are unknowns to be determined. Also, the
functions Jn(x) for n=0,1 are Bessel functions of the first kind, and In(x),Kn(x) for n=0,1
are modified Bessel functions of the first and second kind, respectively.
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Here, for notational convenience, we define

aj (K)=
〈
uj , e−Ky

〉
1
=

[
ρ1

∫ h

0
uj (y)e−Kydy+ρ2

∫ ∞

h

uj (y)e−Kydy
]
,

bj (v)=
〈
uj , l(y)

〉
1
=

[
ρ1

∫ h

0
uj (y)l(y)dy+ρ2

∫ ∞

h

uj (y)l(y)dy
]
,

dj (ξ)=
〈
uj ,L(ξ, y)

〉
1
=

[
ρ1

∫ h

0
uj (y)L1(ξ, y)dy+ρ2

∫ ∞

h

uj (y)L2(ξ, y)dy
]
, j =1,2.

It is now a routine matter to determine the unknown constants. We explain briefly how this
can be done. Using the continuity of the velocity across the porous wall at r=b, the condition
(2.20) for the porous wall at r=b and the condition (2.19) on the inner cylinder at r=a, we
derive three equations in terms of the orthogonal functions discussed in Section 2.1.1. Apply-
ing the orthogonal property and after some algebraic calculations, we can determine all the
known constants and unknown functions in terms of Bessel functions.

We directly express the unknown constants for specific problems of physical interest in the
foregoing analysis. We remark here that, to understand the physically interesting phenomenon,
it is sufficient just to look at the unknown constants in the relation (2.25).
Waves generated by the inner cylinder while the outer cylinder is kept fixed. In this case u1(y) �=
0, u2(y)=0,A1 =0 and A2 =0. This is the situation of physical interest where wave resonance
takes place for certain wave numbers. With the notations

�2(x)=J1(xb)H
(1)
1 (xa)−J1(xa)H

(1)
1 (xb) (2.24)

and

�3(x)=2GH(1)
1 (xa)+πbx2�2(x)H

(1)
1 (xb) (2.25)

and the constraints that �2,�3 never vanishes at the wave numbers, the unknown constants
are determined as

R1 = 4Ge2Kha1(K)

πKb[ρ2 +ρ1(e2Kh−1)]�3(K)

α2 =R2
H
(1)
1 (va)H

(1)
1 (vb)

�2(v)
− H

(1)
1 (vb)

�2(v)

2b1(v)

[ρ2 +2vρ1
∫ h

0 g
2(y)dy]

,

β2 =−R2
J1(va)H

(1)
1 (vb)

�2(v)
+ J1(vb)

�2(v)

2b1(v)

[ρ2 +ρ1
∫ h

0 g
2(y)dy]

,

R2 = 4Gb1(v)

πvb[ρ2 +2vρ1
∫ h

0 g
2(y)dy]�3(v)

,

Note that when �2(K)= 0 or �2(v)= 0, the phenomenon of resonance occurs between the
cylinders.
Waves generated by the outer cylinder while the inner cylinder is kept fixed. Physically this is
an interesting case in which wave trapping occurs, a phenomenon observed when a wave prop-
agates into a region bounded by two walls. Here we must choose u1(y)= 0, u2(y) �= 0,A1 = 0
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and A2 = 0. Then, the unknowns, under the constraints �2(K) �= 0 and �2(v) �= 0, are deter-
mined as

α1=R1
H
(1)
1 (Ka)H

(1)
1 (Kb)

�2(K)
, β1=−R1

J1(Ka)H
(1)
1 (Kb)

�2(K)
, R1=− 2Ka2(K)�2(K)e2Kh

[ρ2 +ρ1(e2Kh−1)]�3(K)

and

α2=R2
H
(1)
1 (va)H

(1)
1 (vb)

�2(v)
, β2=−R2

J1(va)H
(1)
1 (vb)

�2(v)
, R2=− 2vb2(v)�2(v)

[ρ2 +2vρ1
∫ h

0 g
2(y)dy]�3(v)

.

Clearly, it may be seen that in the cases of either �2(K)=0 or �2(v)=0, the generated wave
gets trapped between the cylinders while it maintains a tranquil zone outside the cylinders.
Scattering of waves when the co-axial cylinders are kept fixed. This is the scattering case with
resonance. For surface-wave mode incidence, we must choose u1(y)= 0, u2(y)= 0,A1 = 1(0)
and A2 =0(1). The unknowns, under the constraint that �2(K) �=0, are determined as

α1 =R1
H
(1)
1 (Ka)H

(1)
1 (Kb)

�2(K)
+ H

(1)
1 (Ka)H

(2)
1 (Kb)

�2(K)
,

β1 =−R1
J1(Ka)H

(1)
1 (Kb)

�2(K)
− J1(Ka)H

(2)
1 (Kb)

�2(K)
,

R1 =−πbK
2�2(K)H

(2)
1 (Kb)+2GH(2)

1 (Ka)

πbK2�2(K)H
(1)
1 (Kb)+2GH(1)

1 (Ka)
,

and α2 =β2 =R2 =A(ξ)=B(ξ)=C(ξ)=0.
For the interfacial wave incidence, the unknown, under the constraint that �2(v) �= 0, are

determined as

α2 =R2
H
(1)
1 (va)H

(1)
1 (vb)

�2(v)
+ H

(1)
1 (va)H

(2)
1 (vb)

�2(v)
,

β2 =−R2
J1(va)H

(1)
1 (vb)

�2(v)
− J1(va)H

(2)
1 (vb)

�2(v)
,

R2 =−πbv
2�2(v)H

(2)
1 (vb)+2GH(2)

1 (va)

πbv2�2(v)H
(1)
1 (vb)+2GH(1)

1 (va)
,

and α1 =β1 =R1 =A(ξ)=B(ξ)=C(ξ)=0.
In the case when either �2(K)= 0 or �2(v)= 0, resonance occurs between the cylinders

because of the wave transmission through the porous barrier.

2.2.2. Case of infinite depth with single permeable cylinder
When there is no inner wall, the general boundary-value problem reduces to the solution of
the function φ(r, y) satisfying the relations (2.18), (2.2), (2.3), (2.7), (2.20) and (2.21). In this
case, its general representation is given by

φ(r,y)=





α1J0(Kr)e−Ky+α2J0(vr)l(y)+
∫ ∞

0
A(ξ)I0(ξr)L(ξ,y)dξ, 0<r<b,

A1H
(2)
0 (Kr)e−Ky+R1H

(1)
0 (Kr)e−Ky+A2H

(2)
0 (vr)l(y)+R2H

(1)
0 (vr)l(y)

+
∫ ∞

0
C(ξ)K0(ξr)L(ξ,y)dξ, r >b,

(2.26)
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where α1, α2,R1,R2,A(ξ) and C(ξ) are unknowns to be determined and l(y),L(ξ, y) have
their usual meaning as in Subsection 2.1.

The unknowns can be determined by using the continuity of the velocity across the porous
wall and the condition (2.20) on the porous wall and the particular cases of physical interest
are as follow.
Wavemaker problem. This is the case of wave trapping and we must have u2(y) �= 0,A1 = 0
and A2 =0. The unknown constants, under the constraints J1(Kb) �=0 and J1(vb) �=0, in the
solution (2.26) are given by

α1 =R1
H
(1)
1 (Kb)

J1(Kb)
, α2 =R2

H
(1)
1 (vb)

J1(vb)

with

R1 =−2KJ1(Kb)e2Kha2(K)

[ρ2 +ρ1(e2Kh−1)]

and

R2 =− 2vJ1(vb)b2(v)

[ρ2 +2vρ1
∫ h

0 g
2(y)dy]

.

Waves generated with frequencies K or v satisfying either J1(Kb) = 0 or J1(vb) = 0, get
trapped between the cylinders and causing a tranquil zone outside the cylinder.
Wave scattering. This case represents the resonance of incident waves. For free-surface wave
incidence, we must have u2(y)= 0,A1 = 1 and A2 = 0. The unknown coefficients, under the
constraint that J1(Kb) �=0, in the solution (2.26) reduce to

α1 =R1
H
(1)
1 (Kb)

J1(Kb)
+ H

(2)
1 (Kb)

J1(Kb)
with R1 = 2G−πK2bH

(2)
1 (Kb)J1(Kb)

2G+πK2bH
(1)
1 (Kb)J1(Kb)

.

For the interfacial wave incidence, u2(y) = 0,A1 = 0 and A2 = 1 must be taken and the
unknowns, under the constraint that J1(vb) �=0, become

α2 =R2
H
(1)
1 (vb)

J1(vb)
+ H

(2)
1 (vb)

J1(vb)
with R2 = 2G−πv2bH

(2)
1 (vb)J1(vb)

2G+πv2bH
(1)
1 (vb)J1(vb)

.

Note that R1 and R2 are derived with G replaced by −G above because of the flow consider-
ations and the above linear analysis predicts that resonance occurs inside the porous cylinder
by the transmitted surface or interfacial wave with a frequency satisfying either J1(Kb)=0 or
J1(vb)=0.

2.2.3. Case of finite depth with two co-axial cylinders
The general solution φ satisfying the relations (2.2), (2.3), (2.8), (2.18–2.20) and (2.22) can be
represented as

φ(r, y)=




2∑
j=1

[
αjJ0(mj r)+βjH(1)

0 (mj r)
]
f0(mj , y)+

∞∑
n=1

[
BnI0(pnr)+CnK0(pnr)

]
fn(pn, y),

0<a<r <b, 0<y<∞,

2∑
j=1

[
AjH

(2)
0 (mj r)+RjH(1)

0 (mj r)
]
f0(mj , y)+

∞∑
n=1

DnK0(pnr)fn(pn, y),

b<r <∞, 0<y<∞,

(2.27)
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where αj , βj ,Rj , j=1,2 and Bn,Cn,Dn,n=1,2,3 . . . are the unknowns to be determined and
the functions f0(mj , y), j =1,2 and fn(pn, y), n=1,2,3 . . . are defined in Subsection 2.1.

Like in the infinite-depth case, we briefly mention how the unknowns in the relation (2.27)
are determined. Using the continuity of the velocity across r=b, the condition (2.20) on the
porous barrier at r=b and the condition (2.19) on the inner wall r=a, we can derive three
equations. Applying the orthogonality of the functions involved and after few calculations, all
the unknown can be derived in terms of known functions.

Now, we explain the particular problems of physical interest one by one via the unknowns
associated with the wave parts in the relation (2.27).

Waves generated by the inner cylinder while the outer cylinder is kept fixed. In this case
u1(y) �=0, u2(y)=0,A1 =0 and A2 =0 and the unknowns, under the restriction that �2(mj ) �=
0, j =1,2, are determined as

αi =Ri
H 1

1 (mia)H
1
1 (mib)

�2(mi)
−

〈
u1(y), f0(mi, y)

〉
2
H 1

1 (mib)

miM0(mi)�2(mi)
, i=1,2,

βi =−Ri
J1(mia)H

1
1 (mib)

�2(mi)
−

〈
u1(y), f0(mi, y)

〉
2
J1(mib)

miM0(mi)�2(mi)
, i=1,2,

and

Ri =
2G

〈
u1(y), f0(mi, y)

〉
2

miM0(mi)�3(mi)
, i=1,2.

Clearly, the above analysis predicts that wave resonance occurs between the cylinders for
the frequencies with �2(mj )=0, j =1,2.
Waves generated by the outer cylinder while the inner cylinder is kept fixed. This is the case
where the generated wave get trapped inside the cylinder and here u1(y)=0, u2(y) �=0,A1 =0
and A2 =0. The unknowns, under the restriction that �2(mj ) �=0, j =1,2, are determined as

αi =Ri
H 1

1 (mia)H
1
1 (mib)

�2(mi)
, i=1,2, βi =−Ri

J1(mia)H
1
1 (mib)

�2(mi)
, i=1,2,

and

Ri =−
πbmi�2(mi)

〈
u2(y), f0(mi, y)

〉
2

M0(mi)�3(mi)
, i=1,2, Bn=DnK1(pna)K1(pnb)

�1(pn)
, n=1,2,3 . . .

It may be remarked that the generated wave with the frequencies satisfying �2(mj )=0, j=
1,2 get trapped between the cylinders, while it maintains a calmer region outside the cylinder.
Scattering of water waves when the two co-axial cylinders are kept fixed. In this case u1(y)=
0, u2(y)=0 and, if the incident wave is the free-surface mode, we must have A1 =1 and A2 =0
and the unknowns, under the restriction that �2(m1) �=0, are determined as

α1 =R1
H 1

1 (m1a)H
1
1 (m1b)

�2(m1)
+ H 1

1 (m1a)H
2
1 (m1b)

�2(m1)
,

β1 =−R1
J1(m1a)H

1
1 (m1b)

�2(m1)
− J1(m1a)H

2
1 (m1b)

�2(m1)
,
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Figure 8. Reflection coefficients vs. m1H in case of
two co-axial cylinders for different a/b values with
h/H =0.5, s=0.5, G=1+2.0 and b/H =0.75.
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Figure 9. Reflection coefficients vs. m1H in case of two
co-axial cylinders for different b/H values with h/H =
0.5, s=0.5, G=1+2.0 and a/b=0.75.

R1 = 2GH(2)
1 (m1a)+πbm2

1�2(m1)H
(2)
1 (m1b)

2GH(1)
1 (m1a)+πbm2

1�2(m1)H
(1)
1 (m1b)

and α2 =β2 =R2 =0.
For the interfacial incident wave, A1 = 0 and A2 = 1 must be taken and in this case the

unknowns, under the restriction that �2(m2) �=0, are given by

α2 =R2
H 1

1 (m2a)H
1
1 (m2b)

�2(m2)
+ H 1

1 (m2a)H
2
1 (m2b)

�2(m2)
,

β2 =−R2
J1(m2a)H

1
1 (m2b)

�2(m2)
− J1(m2a)H

2
1 (m2b)

�2(m2)
,

R2 =−2GH(2)
1 (m2a)+πbm2

2�2(m2)H
(2)
1 (m2b)

2GH(1)
1 (m2a)+πbm2

2�2(m2)H
(1)
1 (m2b)

and α1 =β1 =R1 =0.
Note that, when G=0, and for large values of G, the reflection coefficients in SM and IM

become 1, which corresponds to the case of full reflection, as expected. And when �2(mj )=
0, j =1,2, mj , j =1,2 represent the resonance frequencies.

In order to understand the general behavior of the wave reflection by the porous cylinder,
reflection coefficients are plotted against m1H for various values of a/b in Figure 8 for both
the cases of SM and IM. The pattern of the reflection coefficient is observed to be similar to
the one in [21]. The occurrence of a minimum and a maximum in the reflection coefficient
is more pronounced for wave motion in IM as compared to that in SM, showing the signifi-
cance of the internal waves. In addition, with an increase in a/b, the occurrence of maxima
and minima decreases in both the cases of SM and IM. A similar phenomenon in the reflec-
tion coefficient is observed in both the cases of SM and IM for different values of b/H , as
is seen in Figure 9.
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2.2.4. Case of finite depth with single permeable cylinder
When there is no inner wall, the general representation for the potential φ satisfying the rela-
tions (2.18), (2.2), (2.3), (2.8), (2.20), and (2.22) is given by

φ(r, y)=





2∑
j=1

αjJ0(mj r)f0(mj , y)+
∞∑
n=1

BnI0(pnr)fn(pn, y), 0<r <b, 0<y<∞,

2∑
j=1

[
AjH

(2)
0 (mj r)+RjH(1)

0 (mj r)
]
f0(mj , y)+

∞∑
n=1

CnK0(pnr)fn(pn, y),

b<r <∞, 0<y<∞,

(2.28)

where α1, α2,R1,R2,Bn, n= 1,2,3 . . . and Cn,n= 1,2,3 . . . are the unknowns to be deter-
mined.

Again, here too, using the continuity of the velocity across r=b, the condition (2.20) on
the porous barrier at r=b and the orthogonal property of the functions, we can easily deter-
mine the unknown constants in the relation (2.28).
Wavemaker problem. In this case, we must have u2(y) �=0,A1 =0 and A2 =0 and under the
restriction that J1(mj ) �=0, j =1,2 the unknown coefficients in the solution (2.28) reduces to

αi =Ri
H
(1)
1 (mib)

J1(mib)
, i=1,2

with

Ri =−
πbm1

〈
u2(y), f0(mi, y)

〉
2
J1(mib)

M0(mi)

[
2G−πbm2

i H
(1)
1 (mib)J1(mib)

] , i=1,2.

For a porous-wavemaker, the generated wave gets trapped inside the cylinder while it main-
tains a tranquil zone outside the cylinder for waves with frequencies satisfying J1(mj )=0, j =
1,2.
Wave scattering. In this case, we must have u2(y)= 0,A1 = 1 and A2 = 0 for the free-
surface incident wave. The unknown coefficients in the solution (2.28), under the restriction
that J1(m1) �=0, are given by

α1 =R1
H
(1)
1 (m1b)

J1(m1b)
+ H

(2)
1 (m1b)

J1(m1b)
with R1 = 2G−πbm2

1H
(2)
1 (m1b)J1(m1b)

2G+πbm2
1H

(1)
1 (m1b)J1(m1b)

and α2 =R2 =0.
For the interfacial wave incidence, u2(y)=0,A1 =1 and A2 =0 should be taken and in this

case the unknowns, under the restriction that J1(m2) �=0, are obtained as

α2 =R2
H
(1)
1 (m2b)

J1(m2b)
+ H

(2)
1 (m2b)

J1(m2b)
with R2 = 2G−πbm2

2H
(2)
1 (m2b)J1(m2b)

2G+πbm2
2H

(1)
1 (m2b)J1(m2b)

and α1 =R1 =0.
Note that R1,R2 are derived with G replaced by −G above because of the flow consider-

ations and note that there is a loss of energy when the porous parameter G �= 0. In the case
of J1(mjb)= 0, j = 1,2, resonance will occur inside the cylinder for all values of the poros-
ity. The resonance condition within the porous cylinder is similar to that of wave resonance
within a circular tank having rigid boundary. When G=0, the wave gets fully reflected by the
rigid wall of the cylinder in both SM and IM. The reflection coefficient pattern in Figures 10
is observed to be similar to that of the two co-axial cylinders.
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Figure 10. Reflection coefficients vs. m1H in case of single cylinder for different G values with h/H = 0.5, s = 0.5
and b/H =0.75.

3. Derivation of line source potentials

The generation of surface and interfacial oblique water waves involves the consideration of
different types of singularities in the fluid under consideration. When these waves are gener-
ated by a body present in the fluid, the resulting motion can be described by a series of line
singularities placed within the body. Under the action of gravity, the time-harmonic irrota-
tional motion of a two-layer incompressible and inviscid fluid having different but constant
densities is considered.

The symmetric oblique-wave source potential is essentially the function φ(x, y|x0, y0) satis-
fying the relation (2.1) in the fluid region except at the source point (x0, y0), where 0<y0<∞
for infinite depth and 0<y0<H for finite depth and the relations (2.2) and (2.3).

The function φ(x, y|x0, y0) satisfies the relation (2.7) for infinite depth, the relation (2.8)
for finite depth.

At the source point, i.e., as (x, y)→ (x0, y0),

φ∼− 1
2π
K0(l0r)∼ 1

2π
log(l0r), (3.1)

where K0 is a modified Bessel function and r=
√
(x−x0)

2 + (y−y0)
2.

Also,

φ(x, y)∼




A1eiµ|x−x0|−Ky +A2eiβ|x−x0|l(y), for infinite depth

2∑
j=1

Aj eiµj |x−x0|f0(mj , y), for finite depth
as |x−x0|→∞, (3.2)

where Aj , j =1,2 are unknown constants to be determined.
The above problem of finding the symmetric wave-source potential can be recast into the

boundary-value problem of finding the potential function φ(x, y) in the quarter plane x >
x0, y > 0 satisfying the relation (2.1) and the relations (2.2), (2.3), (2.7) or (2.8) and (3.2)
depending on the depth of the water and

�φ
�x

= 1
2
δ(y−y0) on x=x0, (3.3)

where 0≤y0<∞ for infinite depth and 0≤y0 ≤H for finite depth.
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The above condition (3.3) follows upon differentiating the condition φ ∼ 1
2π log(l0r) as

r→0 and making use of the generalized identity

lim
x→x0

x−x0

(x−x0)
2 + (y−y0)

2
=πδ(y−y0).

The solutions for the boundary-value problem in infinite and finite depths are derived as fol-
lows:

3.1. Case of infinite depth

The general form of the potential function φ(x, y) is represented by

φ(x, y)=A1eiµ(x−x0)−Ky +A2eiβ(x−x0)l(y)+
∫ ∞

0
A(ξ)L(ξ, y)e−(x−x0)

√
ξ2+l20 dξ, (3.4)

with A(ξ) being an unknown function yet to be determined.
Using the condition (3.3) and the property of the delta function as given by

∫ ∞

0
δ(y−y0)f (y)dy=f (y0)S(y0) where S(y0)=

{
1, if y0>0
1
2 , if y0 =0,

we derive the unknowns in the expansion (3.4) which are given by

A1 =




− iρ1Ke2Khe−Ky0S(y0)

µ
[
ρ2 +ρ1(e2Kh−1)

] , if 0≤y0<h

− iρ2Ke2Khe−Ky0

µ
[
ρ2 +ρ1(e2Kh−1)

] , if h<y0<∞

− i(ρ1 +ρ2)KeKh

2µ
[
ρ2 +ρ1(e2Kh−1)

] , if y0 =h,

A2 =




− iρ1vg(y0)S(y0)

β
[
ρ2 +2ρ1v

∫ h
0 g

2(y)dy
] , if 0≤y0<h

− iρ2vev(h−y0)

β
[
ρ2 +2ρ1v

∫ h
0 g

2(y)dy
] , if h<y0<∞

− iv[ρ1g(h)+ρ2]

2β
[
ρ2 +2ρ1v

∫ h
0 g

2(y)dy
] , if y0 =h,

and

A(ξ)=




−ρ1ρ2K[ξ cos ξy0 −K sin ξy0]S(y0)

π

√
ξ2 + l20D0(ξ)(ξ

2 +K2)

, if 0≤y0<h

−ρ
2
2K(ξ cos ξy0 −K sin ξy0)+ρ2(ρ2 −ρ1)(ξ

2 +K2) sin ξh cos ξ(y0 −h)
π

√
ξ2 + l20D0(ξ)(ξ

2 +K2)

,

if h<y0<∞

−Kρ2(ρ1 +ρ2)(ξ cos ξh−K sin ξh)+ρ2(ρ2 −ρ1)(ξ
2 +K2) sin ξh

2π
√
ξ2 + l20D0(ξ)(ξ

2 +K2)

, if y0 =h.
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3.2. Case of finite depth

The general form of the potential function, in this case, is given by

φ(x, y)=
2∑
j=1

Aj eiµj (x−x0)f0(mj , y)+
∞∑
n=1

Bnfn(pn, y)e
−(x−x0)

√
p2
n+l20 , (3.5)

where Bn,n=1,2,3 . . . are unknown constants to be determined.
Utilizing the condition (3.3), the unknowns in the relation (3.5) are obtained as

Aj =





− iρ1 sinhmj(h−H)
2µjM0(mj )

[mj coshmjy0 −K sinhmjy0]S(y0), if 0≤y0<h

− iρ2[mj sinhmjh−K coshmjh]
2µjM0(mj )

coshmj(y0 −H)S(H −y0), if h<y0 ≤H

− iρ1[mj coshmjh−K sinhmjh] sinhmj(h−H)
4µjM0(mj )

− iρ2[mj sinhmjh−K coshmjh] coshmj(h−H)
4µjM0(mj )

, if y0 =h,

j =1,2

and

Bn=




− ρ1 sinpn(h−H)
2Mn(pn)

√
p2
n+ l20

[pn cospny0 −K sinpny0]S(y0), if 0≤y0<h

−ρ2[pn sinpnh+K cospnh]

2Mn(pn)

√
p2
n+ l20

cospn(y0 −H)S(H −y0), if h<y0 ≤H

−ρ1[pn cospnh−K sinpnh] sinpn(h−H)
4Mn(pn)

√
p2
n+ l20)

−ρ2[pn sinpnh+K cospnh] cospn(h−H)
4Mn(pn)

√
p2
n+ l20

, if y0 =h,

n=1,2,3 . . .

We remark here that, by allowing h→0 and ρ1 →ρ2 simultaneously, the source potentials
in either of the depths are reduced to the known potentials in a single layer of fluid. Also,
the strength of the source is doubled if a source point appears either at the free surface or at
the bottom boundary in the case of finite depth.

3.3. Multipole linesource wave potentials

The boundary-value problem for the symmetric and antisymmetric multipole wave potentials
φs(x, y|x0, y0), φa(x, y|x0, y0) is the same as the one for the source potentials described above,

except that the condition (3.1) is replaced by φs ∼ 1
2π

cosnθ
rn

, φa ∼ 1
2π

sinnθ
rn

, respectively, as

r→0 for n=1,2,3 . . . , where x−x0 = r cos θ, y−y0 = r sin θ , with 0<θ <π .
Using the representations

log r=
∫ ∞

0

1
ξ
(e−ξ − e−ξ |y−y0|) cos ξ(x−x0)dξ, y, y0>0,

cosnθ
rn

= [sgn(y−y0)]n

(n−1)!

∫ ∞

0
ξn−1e−ξ |y−y0| cos ξ(x−x0)dξ, y, y0>0, n=1,2,3 . . . ,
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and

sinnθ
rn

= [sgn(y−y0)]n+1

(n−1)!

∫ ∞

0
ξn−1e−ξ |y−y0| cos ξ(x−x0)dξ, y, y0>0, n=1,2,3 . . . ,

where sgn is the sign function, we observe that
cosnθ
rn

= − 1
(n−1)!

�n log r
�yn0

, and
sinnθ
rn

=

− 1
(n−1)!

�n log r

�x0�y
n−1
0

, n=1,2,3 . . . , Therefore, the expansions, while existing, for the symmet-

ric and antisymmetric multipole wave potentials φs(x, y|x0, y0), φa(x, y|x0, y0) can be repre-
sented as

φs(x, y|x0, y0)=− 1
(n−1)!

�nφ
�yn0

, φa(x, y|x0, y0)=− 1
(n−1)!

�nφ

�x0�y
n−1
0

for n=1,2,3 . . . ,

where φ is the wave-source potential given by the relations (3.4), (3.5) for infinite and finite
depths, respectively.

4. Conclusions

The expansion formulae for the velocity potentials in a two-layer fluid domain, having a free
surface and an interface, have been derived to analyse wave motion past a porous structure,
in both the cases of water of finite and infinite depths under the assumptions of the linear-
ised theory of water waves. In order to determine the unknown constants in the expansion
formulae for wave motion in a two-layer fluid, a more general type of orthogonal relations
has been utilized which are a generalization of the one used for wave problems in a single
fluid domain of homogeneous density. As an application of the expansion formulae, oblique
water wave radiation and scattering by thin porous structures has been analyzed for both the
cases of finite and infinite water depths. Due to the presence of a free surface and interface,
there are two wave modes of propagation, which are referred to as waves in surface mode
and interface mode. Also, the reflection and transmission coefficients of wave scattering by a
porous barrier and the far-field wave amplitude of the porous wavemaker have been derived
in explicit form for both surface and interface modes in a two-layer fluid. Numerical results
for the reflection and transmission coefficients and the surface elevations at the surface and
the interface, along with the amplitude of the force acting on the structure have been plot-
ted and analyzed for specific cases in order to understand the role of waves propagating both
at the free surface and the interface. The axisymmetric wave motion due to co-axial perme-
able or/and impermeable cylinders has been analyzed and various analytical results have been
presented for the generation and scattering of the two wave modes present in a two-layer
fluid. The condition of resonance within(between) the cylinder(s) was explained and the phe-
nomenon of wave trapping between the two co-axial cylinders analyzed. It is observed that
the interfacial waves resist the porous structure significantly. The present study will be useful
in future design of coastal and offshore structures in a stratified ocean which can be mod-
elled as a two-layer fluid having a free surface. Finally, the wave source and multipole source
potentials for oblique surface water waves have been derived, which are useful particularly in
semi-analytical studies of wave-related problems involving submerged cylinders. By the pres-
ent expansion formulae of the velocity potentials and the associated orthogonal relations, a
large class of problems in a two-layer fluid having a free surface can be simplified to a large
extent. In addition, the analysis of the present study can be extended to investigate a large class
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of problems in the area of fluid-structure interactions arising its broad areas of mathematical
physics and engineering.
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